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I. INTRODUCTION

Let {{/1,} be a sequence of partitions of [ 1. 1].
] q p
H,,I [N \‘()n) B \<1le SRR X;Z” == .

Let {S, f} be the sequence of cubic spline interpolants associated with {1/ !
and a function [ defined on [~ 1.1]). Then S,/ is cubic in each interval

[x{m, xi), S.f belongs to C2[—1. 1] S, f{x{™) == f(x{™), i -= 0,...n. and
(S, 1) (1) = (S, f)Y (1) == 0.1In [7] one of us established that |f‘f€ Cl-1.1].
(_77)
P, = max l?‘”j P for all n. (1
and ( "
/1,"’ _ h,* i
Qvn = lTldX /7([7) — ’/77(;,)1 : h:‘“{‘"v“l‘/lw ! I Q -2 (2)
for all n. where A" == x\%) . x("! then
, , 4 v “P
max [ = Suf1 < gt elf: 8, 3)

where w(/f; 8,) is the modulus of continuity of f and &, = max, h{") is the
mesh gauge. Consequently, S,/ f uniformly on {-—1, 1}, if §,-— 0. For
other such convergence results see [2, 3. 5, 8, 9].

In this paper we investigate the behavior of {S,, f1»., if / has a jump dis-
continuity at x = 0. We establish (Theorem 1) poiniwise convergence of
S, f(x) to f{x) if &, —~ 0, for all points x ~ 0. Golomb {5, Theorem 5] has
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CUBIC SPLINE INTERPOLANTS 151

established L.-convergence of S,/ to f under stronger conditions on fand for
uniform meshes {/7,} only. See also Swartz and Varga [10].

We also show (Theorem 2) uniform convergence on [ —1, []of S, fif f" has
a finite number of jump discontinuities. Both Theorems | and 2 present
explicit error bounds as well as asymptotic behavior.

2. CONVERGENCE THEOREMS

First some notation. Let [/ = [—1,1].J =[-1, —a/4] v [a/4, 1],
K=T—J L [—1, ~a2]laj2,1], where a is specified below. Let
Cuhy = sup fiu(x)y cxe M) oand oy ) == osupfy ulxy) — u(xy) tx; e M
and jx, — Xy < Af for M — [ J. K or L. Also set K, == K - {0} and
1, =1 —{0].

Our first result establishes that introducing a discontinuity at x == 0 in the
function does not destroy the pointwise convergence of {S, f(x)},= to f(x) at
points where / is continuous.

THEOREM 1. Let f'e C(1)) and be bounded on I. Choose {I1,} so as to
satisfy (1) and (2). For an arbitrary (but fixed) ae(0, 1) the cubic spline inter-
polant S, [ satisfies

. . . 26,4, .
(/ - Snf)(’\‘) E K]bn - K2 :(‘Ul(.fs Sn) o /Z : /()I' LX [[,‘2‘ (‘H
where
K, ~ 6(1 - P)max 2 3
1 | - Q k) o 1K
N 4 2(231:~Q_%Q \ and 4, =1 fla/4) — fl—ajd).

Hence for all x = 0,{S, f(x)} converges to f(x) if 8, — 0.
Proof. Fix n and delete the superscripts for ease of notation. Let
i =min{i | x; = —a/2}, i, = max{i | x; == a/2}.
Further, define g € C[—1, 1] by
glx) == flv),  xel,
— al®) 2 (i) ~ fimadx + ad), ek,

If S, g is the cubic spline interpolant of g, then from {7, Theorem 2}.1

!g - Sng il = V"—T-—;_ w[(gs 5n)' (3)

1 This bound was improved in the final form of [7, Theorem 2].
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But  w,(g: 8,) = wy(f: 0,) and wil g; 5,[) LomaX,.p  g(x)] 5”

2(8n/a)“f(a'/4) - f( "a‘,"‘v4)\. Thus

! ZéLA,”

a

e Segh o SR s, (6)

Now consider the spline s -~ S, g — S,/ which satisfies s(x;) - 0 for
x;ed, s(x;)) == glx;) — flxy)for x;e Kand s'( - 1) == s8'(}) « 0. Forxe L

= SaIx) = itg — S,/)0)
‘(g - S”g)(.\')‘ T (Sng' - 5717)(\) -

(7N

The first quantity on the right is bounded in (6), and we now proceed to
bound the second quantity.
Now for 1 <2 i < i;,and i, < i n,

S(X) = 87 Hy(X) = s H(R), oy v (8)

where ¥ == x — x,_, and where H, and H, are cubic polynomials given in
[6, p. 212]. We will prove that there exists a constant K such that | s, 1 <7 K|
for 1 = i <{i, and i, =<C i =2 n. Then as in {7, p. 4] it will follow from (8)
that

B , l . l\ Sn
SO K ) O e < 9)

If we show that K; = 24(1 - P)max{2/2 — Q, 3}|! f]x . then (9) coupled
with (6)—(7) will establish (4).

Towards this end, one could solve for the unknown Hermite coordinates
{5,171 of s(x) via the well known relationship [1].

hecaSioq + 200 = i) 8"+ st

/?7'1 I | lz‘ j . :
=3 171* (8; — $;.4) -+ .,/;L ($;07 — .s*,-)(, i1, 20, i 1. (10)
t hy i1

As in [6], we write this system as
MX =F (1h

where X == (5, 83,-.., 5,,_)t. Note that [F]; == 0 (at least) for / =< i; -+ 2 and
iy, — 2,if 8, < a/lé6.

Motivated by the method of proof in {7], we transform (11) so that the
modified coefficient matrix has a bounded inverse and the slopes s/, for
i <[ and i ™= I,, are bounded.
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Let

g

My My 0
M - [Mz, M., MZB},
0 My My

where My s (7, + 2) < (i - 2), and My is (n — iy + 2) o (0 — i, — 2)
Further (in the notation of [4, p. 31]), define the elementary matrices

O, = E;(—my e | A A R
Ry = E,; ((—my;q/¢)). N R N A
Let C = @, Q; (R, 4R, » Ry, : then
MM, 0
MC My M, My
0 A, MY

where

) i N\ £i1) . !
My = ' and M
1 \\ \ jtitd . /’n' -2 '
N . \
/11', 2 Chpen ] Cug
with
Cy o My Cpoy 7= 1,901 s
¢ oo — (g ey, 200y 2
Cpoi il im0 (/7r1 //7)1—/'.2.”(71 —i'])* 2 i s = ij : :

Next, define two diagonal matrices D, = dg{d}} and D, - dg{d?!:
{ . L . .
d =0, b i g2 and i -2 0w
200, 0 hyo). -3 sl b — 3,

d? e Ui dp -2 and q, -2 <0 di =

A A S A )

Now (11} is equivalent to

-~
N

(D*MCDTWDC XY =+ DY'F = F.
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Let N = /IMCD‘] -/ -+ B. Then, noting thatc 7/1, S {32y h,., for
Vo<l -+ 2, and ¢; > 3/- ~— 2h;q for i, — 2 - -1 - [, we have

1Bl max(Q2.3) < 1.
Hence | V-], < max{2/ 2.0 0, 3}. This, coupled with
[F L S 61 b Py f =g iy -2 1201 = P)If i
yields

-~ 2 K
DCIX 2 max B0 P SEe )

We now show that (13) implies s,/ = [X]; << K, ,fori . i i -+ 1 and
is, — 1 - i+n—1 From [4, p. 31},

-1 = /
Q?’ ]J[,‘(1(’”17?'%'1./”7”)’

-1 - ! .
R = Ejiqlmy; /my);

so C' == (p;;), where, by direct calculation, p;; = 0 except

py = 1,1=j
MM, Joe= i | and | =7 ]
== My Mg, Joeedo— 1 and i — 1V =l i — 1.

We next note that [D, C"‘X],- = X; for i =i 4 2,4, 2: hence from
(13), \.s o] < Kyl2 and I's] 51 <7 Kyj2. Now, since [D,C 'X]; = [C1X],
for 1 < i=4i -+ 1 and Iy — e i — I. we have from the form of C!
that

i My, . .
g,/ o — g K,/2, for 1< i-lip o 1,
: iy,
. gy ! . . . .
R H[LI";_l' [\]/2, for i, — 1 ii=ln—1
ni;; -

Therefore | s, << Ky for | < i< iy -+ land i, — 1 =1 < n - 1. which
establishes (9) and hence the theorem. Q.E.D.

COROLLARY 1. Let f be a bounded function on [—1, 1], with discontinuties
at &, 1 = [ = m, but continuous elsewhere on [—1, 1]. Next, let {I1.)} satisfy
(1) and (2). If a >0 is so chosen that

E¢lé —al2, & +al2l;i = jiij=12..m. (14)
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and if
K=& — a &+ ajdl,
i1
J=1T1-"-K,
T T AR R T Ay
and
A, = max [ f€ -+ ajd) — fig — a4)),
then

(/M Snf)(x)' = K18n ’{‘ Kz{wf(f; Bn) + 287¢Aa/a} (}5)

for xe L. Hence, for x == §&,,1 <20 <<m, S, f(x) converges to f(x), if
8, — 0.

Proof. The proof foilows that of Theorem 1, with the new definitions for
J.K, L ,and 4, .

COROLLARY 2. If the hypotheses of Corollary | are satisfied, and [ is
Lipschitz continuous on [—1, &), (&), &), (&1, €2,y and (£, 1], with
Lipschitz constants ¥; |, respectively, i = 1,2,..., m - 1, then

(= S, ) << [Ky + (5]2) £+ 6, (16)
for| x| > a2, where ¥* = max{¥%, | 24,/a}. Hence, for x = &, .

I <<ieom =1,

VAN

S, f(x) converges to f(x), if 5, — 0.

Proof. We first note that f is Lipschitz continuous on [, = 7 — {111, .
with Lipschitz constant Z*. The proof follows that of Theorem 1, with the

exception of the use of
g —S.glly << (5/2) £*5,,

which was given in [7, Theorem 3].
Our final result concerns cubic spline approximation of continuous func-
tions possessing continuous derivatives at all but a finite number of points.

THEOREM 2. Let fe C[—1,11,f" € C,), where I, = [—1,1] — {£30

=1 -
Let f' be bounded on 1,. Let {I1,} be an arbitrary sequence of partitions of
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[~ 1. 1L with o, > 0. Then S, f converges to . uniformly on { 1.1]. In fact,

Sn/ - / I -: f’ / On . (17)
Pruo/‘ The Mean Value Theorem applics to cach interval [ 1
[£. Eajnnnn [€,, . 1], and hence. if x, and x, belong to the same interval,
(& . & ] then ' f(x) — flxs) -~ 7,y X

g

Also if. say, x, € [€,, &] and x, < [€,. &,]. then

- & ]
c.&

4 »\‘: ‘ ‘/‘, 1

e

Y I LR e e A AR e

Hence /'is Lipschitz on [ -1, 1] with Lipschitz constant” /*

But from [7. Theorem 3], we have (17).

In essence, Theorem 2 states that the order of convergence ot a sequence ol
cubic spline interpolants to a function fis unchanged if the condition ** /= C
is replaced by /s piecewise continuously differentiable.”

fn the spirit of the above discussion. a close look at the proofs of
[3. Theorem 1] and [6, Theorem 1] indicates similar results when /= C {/]
and wien [ s piecewise continuous. - 2.3, or 4. To he more specific,
relation 17) of [6] remains valid if /< CYin cach open interval (x, . x, )
Tavlor's formula with remainder still applies. This can be guaranteed simply
by requiring all points of discontinuity of /" 1o be mesh points of each 1, .
A similar medification of the proof in [3] vields:

Tivoriv 30 Let o m o~ 2.30 0or 4 et (= Co 0 LML and et 1 be
coniinuons and bounded on 1, . Let {11, be a sequence of partitions of [ 1, 1.
with o, » 0. such that each discontinuity of fUo0 & is a mesh poini of 11,

Iy i.2..... Then (S, /)" converges 1otV uniformly on [ -1. 1]
O  » m 1. In fact,
S, f - A0 e [ e (18)

the constants €, . are given in [3, Table 112

Remark. 1Wm -~ 41in (18), then (S, / - /)™ (x,)1s 1o be interpreted us u
right- or left-hand derivative at the mesh point x,

3. Exampres
We include two examples to illustrate the convergence results. The first is
an example of spline approximation of a function with a discontinuity at the
origin. and the second of a function with a discontinuity in slope at the origin.

*Since [ is defined at the endpoints, S,/ is chosen so that (S, /) (x,) — f(x), § =0, o
Sec Examples | and 2.
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ExaMPLE 1. f(x) = x% 41, =1 2 x 000 and f(x) == x,0 < x: 1

with &, == 1/4, 8, = 1/8, and o, == 1/16. See Figures 1. 2, and 3. respectively.

o

9]

ExampLE 2. f(x) - x , =1 = x < [, with 8, ~ 14, 6, — 1’8 and
1/16. See Figures 4. 5. and 6, respectively.
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